Can progressive and non-progressive behavioural variant frontotemporal dementia be distinguished at presentation?

M Hornberger, B P Shelley, C M Kipps, O Piguet and J R Hodges

Updated information and services can be found at:
http://jnnp.bmj.com/cgi/content/full/80/6/591

These include:

References
This article cites 14 articles, 10 of which can be accessed free at:
http://jnnp.bmj.com/cgi/content/full/80/6/591#BIBL

Rapid responses
You can respond to this article at:
http://jnnp.bmj.com/cgi/eletter-submit/80/6/591

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Journal of Neurology, Neurosurgery, and Psychiatry go to:
http://journals.bmj.com/subscriptions/
Can progressive and non-progressive behavioural variant frontotemporal dementia be distinguished at presentation?

M Hornberger,1 B P Shelley,2,3 C M Kipps,2,4 O Piguet,1 J R Hodges1,2

ABSTRACT

Background: Recent findings suggest that patients with behavioural variant frontotemporal dementia (bv-FTD) differ in their disease progression (progressive vs non-progressive patients). The current study investigates whether the two groups can be discriminated by their clinical features at first presentation.

Methods: Archival clinical data of the Early Onset Dementia Clinic, Cambridge, UK, were analysed for 71 patients with bv-FTD: 45 progressive and 26 non-progressive cases with more than 3 years of follow-up. The subgroups were largely indistinguishable on the basis of the presenting clinical features but could be distinguished on general cognitive (Addenbrooke’s Cognitive Examination-revised) and selected supportive diagnostic features (distractibility, stereotypic speech, impaired activities of daily living (ADLs) and current depression).

Conclusions: Progressive and non-progressive patients are difficult to differentiate on the basis of current clinical diagnostic criteria for FTD but a combination of general cognitive, executive dysfunction and impaired ADL measures appear to be the most promising discriminators.

Frontotemporal dementia (FTD) is a common cause of young onset dementia (<65 years).1 Clinical diagnostic criteria have been proposed2 but differentiation from other dementias remains problematic,3,4 particularly for the behavioural variant of FTD (bv-FTD) in which patients present with changes in personality and social conduct,5,6 with considerable impact on carers.7 Recent findings have shown variation in disease progression of bv-FTD. Some patients progress rapidly over a few years, others show hardly any changes over a decade.8–10 This raises important issues concerning current diagnostic criteria which appear not to distinguish patients with definite FTD from those with little or no progression. The aetiology of these non-progressors is a matter of ongoing debate; it seems increasingly unlikely that they have true FTD but rather a “phenocopy” which mimics the behavioural symptoms of bv-FTD.8,9

The current study aimed to differentiate progressive and non-progressors on the basis of their behavioural profiles at presentation by analysing: (1) the clinical features of the FTD consensus criteria;10 and (2) caregiver information from the Cambridge Behavioural Inventory (CBI).

METHODS

Case selection

Review of the Cambridge Clinic database (1991–2007) yielded 125 patients with a clinical diagnosis of bv-FTD. Fifty-two patients were excluded for the following reasons: follow-up of less than 3 years; no independent informant; limited clinical data; patients referred late in their illness. All patients were assessed by the same behavioural neurologist (JRH), neuropsychiatrist (Professor G Berrios) and underwent neuropsychological evaluation and MRI scanning. None met the criteria for major depression, schizophrenia, obsessive compulsive disorder or substance abuse. All caregivers were interviewed independently11 and reported an insidious change in behaviour and social function characteristic of bv-FTD. Diagnosis at the time of presentation was made at a consensus multidisciplinary meeting and patients were followed in a dedicated clinic.

Prior to attendance at the clinic, all caregivers completed the CBI which assesses several domains (see table 1). The CBI items are scored by frequency of occurrence (0–4) and have been validated against the Neuropsychiatric Inventory.12 13 Only data from the first assessment were included in the analyses.

A neurologist (CK), not involved in the initial evaluation and blind to subgroup membership, classified the cases into progressive and non-progressive based on decline in general cognitive function (ie, Addenbrooke’s Cognitive Examination-revised (ACE-R)) and everyday abilities over 3 years. MRI scans were rated for atrophy using a semiquantitative visual rating scale.8 9 These selection criteria yielded 45 progressive and 26 non-progressive cases. Of the progressive cases, 32 were dead, including 18 cases with available postmortem investigations confirming FTD pathology (tau or TDP-43 positive) in all cases. The research programme was approved by the Addenbrooke’s Hospital Local Research Ethics Committee.

Selection of clinical features

Clinical features were coded into core, supportive (history, physical, behaviour, language and other) and exclusion features from letters and clinical notes by a neurologist (BS), not involved in their diagnosis, and was blind to the progressor vs non-progressor status.

Statistics

Data were analysed using SPSS15.0 (SPSS Inc, USA). Parametric variables (age, education, ACE-R, Mini-Mental State Examination, CBI) were compared across the groups via independent t tests. Non-parametric categorical clinical data were analysed with χ² tests and Mann–Whitney t tests, respectively.

1 Prince of Wales Medical Research Institute, University of New South Wales, Sydney, Australia; 2 Department of Clinical Neurosciences, University of Cambridge, UK; 3 Department of Neurology, Father Muller Medical College, Mangalore, India; 4 Wessex Neurological Centre, Southampton University NHS Trust, Southampton, UK

Correspondence to: Professor J Hodges, Prince of Wales Medical Research Institute, Cnr Barker and Easy Street, Randwick, NSW 2031, Sydney, Australia; j.hodges@powmri.edu.au

Received 25 September 2008
Revised 17 December 2008
Accepted 14 January 2009
Published Online First 18 February 2009
Table 1 Mean scores for demographics, general cognitive and clinical tests in progressive and non-progressive patients

<table>
<thead>
<tr>
<th></th>
<th>Progressors (P)</th>
<th>Non-progressors (NP)</th>
<th>P vs NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>45</td>
<td>26</td>
<td>−</td>
</tr>
<tr>
<td>Age (years)</td>
<td>68.9 (8.3)</td>
<td>67.4 (7.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Education (years)</td>
<td>11.5 (2.2)</td>
<td>12.2 (2.4)</td>
<td>NS</td>
</tr>
<tr>
<td>Age at onset (years)</td>
<td>57.6 (8.5)</td>
<td>54.1 (7.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Length of history (years)</td>
<td>3.9 (3.4)</td>
<td>2.9 (1.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Handedness (Right/Left)</td>
<td>33/2</td>
<td>20/2</td>
<td>NS</td>
</tr>
<tr>
<td>Sex (Male/Female)</td>
<td>28/17</td>
<td>24/2</td>
<td>*</td>
</tr>
<tr>
<td>ACE (100)</td>
<td>67.1 (20.6)</td>
<td>62.6 (20.4)</td>
<td>**</td>
</tr>
<tr>
<td>MMSE (30)</td>
<td>24.5 (4.9)</td>
<td>26.4 (6.2)</td>
<td>NS</td>
</tr>
<tr>
<td>CBI (156)</td>
<td>71.4 (67.1)</td>
<td>61.5 (57.9)</td>
<td>NS</td>
</tr>
<tr>
<td>Memory</td>
<td>11.9 (5.7)</td>
<td>10.6 (5.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Attention/orientation</td>
<td>9.1 (5.5)</td>
<td>8.1 (7.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Everyday skills</td>
<td>11.3 (8.7)</td>
<td>4.9 (6.9)</td>
<td>*</td>
</tr>
<tr>
<td>Self-care</td>
<td>6.2 (6.8)</td>
<td>1.2 (1.3)</td>
<td>**</td>
</tr>
<tr>
<td>Mood</td>
<td>11.7 (6.7)</td>
<td>12.4 (7.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Abnormal beliefs</td>
<td>2.6 (3.4)</td>
<td>3.7 (4.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Challenging behaviour</td>
<td>3.5 (2.9)</td>
<td>3.7 (4.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Disinhibition</td>
<td>6.3 (4.7)</td>
<td>4.6 (4.6)</td>
<td>NS</td>
</tr>
<tr>
<td>Eating habits</td>
<td>6.8 (4.3)</td>
<td>5.5 (4.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Sleep</td>
<td>4.2 (2.2)</td>
<td>2.2 (1.6)</td>
<td>**</td>
</tr>
<tr>
<td>Stereotypicity</td>
<td>16.6 (9.2)</td>
<td>13.8 (7.4)</td>
<td>NS</td>
</tr>
<tr>
<td>Motivation</td>
<td>21 (8.1)</td>
<td>17.2 (9.6)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Values are mean (SD) or number.
*p<0.05, *p<0.01.

ACE, Addenbrooke's Cognitive Examination; CBI, Cambridge Behavioural Inventory; MMSE, Mini-Mental State Examination.

RESULTS

Demographic and global cognitive function (table 1)
Comparisons between progressors and non-progressors revealed no significant difference in demographic variables, except sex distribution with a higher percentage of men in the non-progression group (p<0.025). The two groups differed in their performance on the ACE-R total score (p<0.01), which was lower in the progressive group. Baseline MRI scans were rated as 0–1 in all non-progressors while all progressors had at least one region rated as 2.**

Cambridge Behavioural Inventory
On the CBI, significant intergroup differences were present for the everyday skills (p<0.025), self-care (p<0.01) and sleep (p<0.01) subscores which were abnormal in the progressors. All other CBI subscores showed similar performance in the two groups.

Core and supportive diagnostic criteria
No differences between progressors and non-progressors were present for any core feature (table 2). Decline in personal and social conduct was equally high in both groups. Less frequent for both groups were loss of insight and emotional blunting although over 60% of cases presented with these clinical features. Excluding insidious onset which was universally present, 80% of progressors and 70% of non-progressors exhibited three or more core diagnostic features at first presentation.

Distractibility and stereotypic speech were the only supportive features that were significantly more common in the progressive cases. The other supportive feature that approached significance was current depression (p = 0.065) which was more frequent in non-progressors. Incontinence, hyperorality, speech pressure, extrapyramidal abnormalities and bulbar palsy were present in less than 8% of cases.

A binary logistic regression (using distractibility; stereotypical speech; current depression; personal hygiene; and impaired activities of daily living (ADL)) showed that none of the factors discriminated between the groups. We also collapsed the clinical features into core, physical supportive, behavioural supportive and language supportive features. Non-parametric analyses showed a difference for the language features only (p<0.025) which were more common in progressors.

Exclusion clinical features
Analysis of the exclusion features (ie, abrupt onset, seizures, head trauma at onset, severe amnesia, history of spatial disorientation, myoclonus, pyramidal signs, cerebellar ataxia, alcohol, vascular disease) showed no significant difference between the two groups. These features were generally absent in both groups, except amnesia, which was present in 11.1% and 3.8% of progressors and non-progressors, respectively.

DISCUSSION
Using the current diagnostic criteria it is difficult to distinguish progressive from non-progressive bv-FTD patients at first presentation. Both groups show high levels of endorsement...
for insidious onset, decline in personal and social conduct, loss of insight and emotional blunting. Three or more core diagnostic criteria were present in over 70% of cases. It is also interesting that not all of the progressing bv-FTD patients present all five core criteria at first presentation.\(^7\) Of note is the fact that the diagnoses in all cases were made in a multi-disciplinary clinic setting by an experienced team.

For the supportive features,\(^2\) distractibility and stereotyped speech were the only factors showing significant intergroup difference. A binary logistic regression confirmed that none of the consensus criteria distinguished the groups. When the supportive features were collapsed, the speech subcomponent was found to discriminate between the groups, probably because of the higher prevalence of stereotyped speech in the progressors.

The issue of exclusion features is complex. In this study, we permitted the diagnosis in patients with a typical presentation, even in the presence of one excluding feature, usually alcohol abuse or amnesia. Signs of alcohol abuse might be a secondary manifestation of social disinhibition in bv-FTD, and a prior clinicopathological study\(^3\) showed that 10% of FTD patients present with severe amnesia.

In addition to the information gained from clinical interviews of family members, the CBI showed a group separation for everyday skills, self-care and sleep subscores. This reflects the underlying deficit in activities of living in progressors.\(^6\) Unfortunately, there are only two questions in the sleep section of the CBI (poor nocturnal sleep and day-time sleepiness). Sleep and circadian rhythms require more systematic exploration in bv-FTD.

Poor differentiation of progressors and non-progressors at presentation presents a problem. If the clinical features are identical, how can non-progressors be distinguished without waiting for 3 years for a more definite diagnosis? Our study suggests that ADL impairment and general cognitive function may distinguish the subgroups. This is supported by recent work\(^10\) showing that progressive and non-progressive bv-FTD can be separated on the basis of their ADL performance. The lower ACE-R scores in progressors presumably reflects executive dysfunction, which has been shown to distinguish progressive and non-progressive patients.\(^17\)

Together with tests of executive function, structural brain imaging provide the clearest method of distinguishing patients with true FTD.\(^6\) The results of the present study, together with other recent parallel investigations, suggest that a combination of MRI quantification of brain atrophy, measurement of executive function and assessment of ADLs allow the most promising distinction between progressive and non-progressive bv-FTD patients.

The aetiology of the non-progressors remains unknown.\(^3\) Given their excellent long term prognosis it seems unlikely that they have a neurodegenerative disorder. All were seen by an experienced neuropsychiatrist (Professor G. Berrios) to exclude standard psychiatric diagnoses, although a proportion manifested a degree of mood disturbance and some may fit within the autism–Asperger’s spectrum.

In conclusion, the widely used consensus diagnostic criteria are in need of revision, as highlighted recently.\(^18\) Supportive features were present in a minority of the cases, making their inclusion questionable. We support a revision of the criteria to incorporate levels of certainty: definite, probable and possible, depending on the combination of features present. Impairment in instrumental ADLs should be included as a core diagnostic feature given their ability to distinguish progressive from non-progressive bv-FTD cases.\(^6\)

Acknowledgements: Data collection was conducted by BS and CMK; statistical analysis was performed by MH; all authors contributed equally to the preparation of the manuscript.

Funding: This research was funded in part by an MRC program grant to JRH. JRH is supported by an Australian Research Council Federation Fellowship (FT0776229). OP is supported by a National Health and Medical Research Council of Australia Clinical Career Development Award Fellowship (#510914).

Competing interests: None.

Ethics approval: The study was approved by Addenbrooke’s Hospital Local Research Ethics Committee, Cambridge, UK.

REFERENCES